

: Comparing IVI-COM and IVI-C

Presented by:

Kirk Fertitta
Chief Technical Officer
Pacific MindWorks

Page 2 of 57

TABLE OF CONTENTS

Table of contents .. 2

Introduction... 4

Broadest ADE Support... 4

.NET Support... 5

LabVIEW Support... 7

IVI-C Drivers in LabVIEW ..7

IVI-COM Drivers in LabVIEW..15

Labwindows support .. 21

Class Drivers .. 22

Self Describing Components ... 24

Integrated Hierarchy .. 27

Name Collisions .. 30

Using Properties... 32

The IntelliSense Experience.. 33

Type-Safe Properties ... 36

Repeated Capabilities ... 37

Multiple Instrument Class Support ... 41

Mixing Class-Compliant and Instrument-Specific Code .. 43

Error Handling.. 45

Better Data Types.. 46

Arrays and Strings.. 46

Page 3 of 57

Object Parameters ... 49

Remote access and Location Transparency ... 50

Performance Myths .. 51

Conclusion .. 51

Appendix A – IVI-COM/IVI-C Comparison Chart.. 53

Page 4 of 57

INTRODUCTION

The Interchangeable Virtual Instrument (IVI) Foundation1 currently defines two interface
standards for constructing IVI-compliant drivers – IVI-COM and IVI-C. While both
technologies offer many of the same benefits (interchangeability, simulation, and state
caching) it is crucial to understand the differences between IVI-COM and IVI-C when
deciding upon which technology to adopt.

Ideally, instrument manufacturers would supply both IVI-COM and IVI-C drivers with their
instruments. This provides the broadest possible “reach” for their drivers in terms of
application development environments (ADEs)2.

Practically, however, driver developers often are faced with choosing either IVI-COM or
IVI-C as their driver platform. Time, resource, or budget constraints may preclude
furnishing two sets of drivers for their instruments. In these instances, choosing IVI-COM
will provide the best test-developer experience in the widest range of ADEs. This paper
will examine in detail each of the advantages that IVI-COM enjoys over IVI-C.

Note: Refer to Appendix A – IVI-COM/IVI-C Comparison Chart for an at-a-glance
comparison of the two driver technologies.

BROADEST ADE SUPPORT

IVI-COM drivers offer test programmers the best experience in Microsoft environments.
Many features of COM itself were designed with Visual Basic users in mind. COM type
libraries present the Visual Studio IDE (integrated development environment) with
descriptive information for use with object browsers, IntelliSense, and context-sensitive
help. Visual Basic users are completely insulated from the complexities of COM and C++,
while Visual C++ users enjoy the power and flexibility of direct COM programming,
including a variety of convenience features, such as smart pointer wrapper classes.

1 The Interchangeable Virtual Instrument (IVI) Foundation (www.ivifoundation.org) was formed in 1998 with a
charter to simplify test system development and maintenance by standardizing instrument driver technology.

2 Please refer to the paper “Navigating the Landscape of IVI,” available at www.pacificmindworks.com, for a
thorough discussion of why providing both IVI-COM and IVI-C drivers is important for test and measurement
customers.

http://www.ivifoundation.org/

Page 5 of 57

.NET SUPPORT

The native support that .NET languages, such as VB.NET and C#, have for COM
components is excellent. Any COM component, including IVI-COM drivers, can be
integrated into a .NET client application using standard .NET wrappers known as interop
assemblies. These interop assemblies present a .NET interface to COM components, so
that .NET applications can access the COM component as if it had been originally
authored in .NET.

The process of generating these interop assemblies is simple and well-known, as is their
use in application development. A single interop assembly can be generated and
deployed alongside an IVI-COM driver. The IVI Foundation even provides a specification
prescribing how this should be done, so that end users have a consistent experience with
IVI-COM drivers in .NET. More importantly, the IVI Foundation provides the interop
assemblies required for achieving .NET interchangeability with IVI-COM drivers.

By comparison, using IVI-C drivers in any .NET language is tedious and error prone. Since
IVI-C drivers rely on function panel files (.fp) and attribute information files (.sub) that
cannot be consumed by Visual Studio, there is no way to infer what IVI-C driver function
signatures should look like in .NET. Thus, the end user must supply the function signature
along with the requisite .NET interop attributes for every IVI-C driver method they wish to
use. Constructing such function signatures directly is extraordinarily burdensome for the
end user.

Consider an IVI-C driver that implements the IVI-defined ReadYTrace from the IviSpecAn
class specification. This function is very representative of many IVI-C driver functions
because it exhibits how IVI-C uses extra parameters to represent array parameter sizes.

ViStatus _VI_FUNC ke2810_ReadYTrace (

 ViSession Vi,

 ViConstString TraceName,

 ViInt32 MaxTimeMilliseconds,

 ViInt32 ArrayLength,

 ViInt32* ActualPoints,

 ViReal64 Amplitude[]);

This function triggers a measurement and returns the resulting data in the Amplitude
output array. As per the IVI specifications, all memory in IVI-C drivers is allocated by the
caller. The ArrayLength parameter specifies the number of elements in the Amplitude

Page 6 of 57

array allocated by the caller. The driver implementation populates the Amplitude array
with the measured data (up to a maximum of ArrayLength points) and then returns the
actual number of elements read in the ActualPoints output parameter.

There is nothing in the C programming language to indicate this very important
relationship between Amplitude, ArrayLength, and ActualPoints, so .NET requires this
information to be supplied explicitly. In addition, the user must indicate the underlying
data type for each of the function parameters. While some of these mappings are
obvious, others may not be to some users. For instance, the user may have to consult the
IviVisaType.h header file to learn that ViSession is defined as an unsigned 32-bit integer,
while the ViStatus return type is defined as a signed 32-bit integer. Mapping string data
types from IVI-C drivers to .NET also requires users to know that IVI-C drivers use the ANSI
character instead of Unicode (which is used exclusively by IVI-COM drivers and by the
.NET platform itself). Thus, the user must adorn their .NET method declaration with an
attribute that indicates how string parameters should be marshaled between .NET and
IVI-C.

One possible .NET declaration of the ReadYTrace IVI-C function is shown below:

[DllImport("ke2810.dll", CharSet=CharSet.Ansi)]

static extern int ke2810_ReadYTrace(

 uint session,

 string traceName,

 int maxTimeMilliseconds,

 int arrayLength,

 out int ActualPoints,

 [MarshalAs(UnmanagedType.LPArray, SizeParamIndex=3)]

double[] Amplitude);

The DllImport attribute is used here to indicate which DLL contains the IVI-C function
definition. The CharSet property instructs the .NET marshaler to translate .NET strings
passed to the driver from ANSI to Unicode. It is very easy to forget the CharSet property,
and, confusingly, this property has a different default value for C# and Visual Basic
clients than for C++ clients.

The MarshalAs attribute is applied to the Amplitude array parameter to indicate how this
parameter should be marshaled. The SizeParamIndex property tells .NET that the 4th
parameter (zero-based index of 3) represents the size of the Amplitude array being
passed to the IVI-C driver function. It might be expected that the client could somehow
indicate that the ActualPoints parameter represents the number of array elements
returned by the driver, but this is not supported. This has performance implications
because the caller will pre-allocate the maximum number of array elements and all of

Page 7 of 57

this data will be marshaled to the driver. That same number of elements will then be
marshaled back to the client, even if the driver only populated a small amount of data.
There is no way to tell .NET that some of the data coming back from the driver isn’t “real”
data – but that it is only “empty” pre-allocated memory.

Not only is the above .NET declaration for an IVI-C function tedious and error prone,
there are multiple ways to provide a working declaration that achieves the same result.
For instance, one might declare the Amplitude array using the IntPtr type instead of the
standard .NET array shown above. Indeed, there may be compelling performance
reasons to do precisely that. However, the crucial point is that there are no IVI standards
explaining how these .NET declarations should be done or any IVI-shared components
provided upon which users can rely. Not only does this lead to an inconsistent user
experience, which IVI has sought to eliminate in the first place, but it makes .NET
interchangeability with IVI-C drivers impossible. With IVI-COM, users install only the IVI
Shared Components and the driver they receive with their instrument. With IVI-COM,
users can write interchangeable .NET applications while with IVI-C they cannot.

LABVIEW SUPPORT

Perhaps more than any other ADE, LabVIEW creates confusion and misinformation about
IVI driver integration. The official position of National Instruments is that IVI-C drivers are
the obvious choice for users building LabVIEW applications with IVI drivers. Many
developers blindly accept this advice, assuming the ADE vendor would know which type
of IVI driver works best in their own environment. However, careful examination of the
rationale for this position shows very little technical justification can be found. In fact, as
this section will show, IVI-COM drivers in LabVIEW turn out to enjoy several noteworthy
advantages over IVI-C.

While the native COM support that LabVIEW provides has been available for a number
of years, it always has been undersold. With LabVIEW 8.2, the support for native COM
has gotten even better with a new Class Browser that exposes a uniform interface for
browsing everything from COM objects, such as IVI-COM drivers, to .NET components,
DAQ functions, and more. National Instruments always has advocated IVI-C over IVI-
COM, so the fact that they found it in their interest to improve LabVIEW’s COM support
gives testimony to the importance and pervasiveness of COM in general.

IVI-C DRIVERS IN LABVIEW

Page 8 of 57

To understand how IVI-C and IVI-COM drivers work in LabVIEW, we start with an
examination of LabVIEW’s native support for conventional Win32 dynamic link libraries
(DLLs). LabVIEW exposes a single primitive called the “Call Library Function Node”. It
appears in the Libraries and Executables subpalette of the Connectivity palette.

To call a function in a DLL, such as an IVI-C driver, you drop this node onto your LabVIEW
diagram, right click on the node, and select Configure. This brings up a dialog that
allows you to specify the location of the DLL and the name of the function you want to
call.

Page 9 of 57

The real difficulty arises when you navigate to the Parameters tab, where you realize that
you must manually specify each of the function arguments, their data type, and whether
they are passed by value or by reference. This is shown in the image below:

Page 10 of 57

If you get even one of these parameter specifications wrong, then your program will
crash – and probably take LabVIEW down with it. At this point, one realizes that there
must be a better way. The Call Library Function Node is far too tedious and error prone
to be practical. To be fair, it is not this way because the LabVIEW team couldn’t figure
out how to make it easier. Rather, it is because it is impossible to determine the function
prototypes present in a conventional Win32 DLL by looking at the DLL alone. Raw DLLs
simply do not contain this information. This point will be revisited later in the section on
Self Describing Components.

To avoid the laborious process of configuring raw DLL calls in LabVIEW, National
Instruments provides a conversion utility that reads the contents of an IVI-C driver’s
function panel (.fp) file and attribute information (.sub) file and generates LabVIEW
Virtual Instruments (VIs) that look very much like other VIs encountered in traditional
LabVIEW programming. After running the utility, the driver VIs appear in the Instrument
I/O menu under the specific driver palette:

Page 11 of 57

At first glance, this seems like LabVIEW nirvana – a completely unwieldy IVI-C DLL
morphed into a familiar and easy-to-use set of LabVIEW VIs. And, to be fair, the tool is
useful -- especially considering the alternative of the Call Library Function Node discussed
earlier. However, a careful and objective examination of the utility reveals a less than
obvious set of choices for the user. The TDMA palette looks like this:

All seven of the submenu icons on the TDMA palette are identical. Moreover, most of the
VI icons are identical. Which of those seven submenus takes the user to the PDC

Page 12 of 57

modulation functions? Which of the first-level TDMA functions are used to enable TDMA
burst mode and what indication does the user have to guide them to the filter selection
VI? This is far from an isolated case, as can be seen by glancing at the entire VI tree for
this driver:

Although the diagram is difficult to read, it’s easy to see how widespread the icon
replication problem is. The IVI-C driver converter used a default icon for every function
that was not part of the IVI specifications. Real-world drivers, such as the one above,
almost always have more instrument-specific functions than IVI-defined functions. As
instruments become more complex, this gulf only will grow for many types of instruments.
Other instruments might follow the IVI specification more closely and suffer less from the
problem above. The important point is that LabVIEW users need to be prepared for both
eventualities. The IVI-C driver used in this discussion is not a contrived example – it is a
real-world NI Certified IVI driver available on the NI public web site.

Another important point to make about the wrapper VIs is that all of the driver attributes
are missing from the palettes.

Page 13 of 57

Consider a simple application, built using this wrapped IVI-C driver:

This example configures the RF signal, enables modulation, and then enables the output.
The diagram looks reasonably clear. Most of the icons are unique and a user can, at a
glance, get a pretty good idea of what’s going one. (The little type-N connector image
is actually quite clever.) One minor annoyance is the difficulty in determining which of
the 3rd and 4th VIs is enabling the output and which is enabling the output modulation.
Neither icon gives a clear indication nor do the parameter names. The problem actually
gets worse as the complexity of the driver increases.

The reason that the simple example above works fairly well is that it uses mostly IVI-
defined functions. Real applications will invariably need to stray from this often limited
set of capabilities. In these situations, the LabVIEW code for a wrapped IVI-C driver is far
less inviting. Two examples of instrument-specific driver programming are shown below.
One application configures a TDMA signal and the other configures a CDMA signal. Can
you tell which one is which?

Page 14 of 57

Even after trolling through the confusing driver Function palette, the LabVIEW
programmer is left with code that is mostly opaque.3 What people often fail to
remember is that while code may be written only once, it is read many, many times over.
Few things are more important in long-term software maintenance than clear, readable
code. The test applications above – simple, but far from contrived –- do not fit the bill.

Proponents of the IVI-C wrapper approach would argue that the icons should be
“touched-up” to make each of them unique. This is a daunting task and far beyond
what most end users would be willing to undertake in order to make their code readable.
And, if the underlying IVI-C driver is updated or enhanced, the wrapper generation
process would need to be performed again. National Instruments advises each
instrument manufacturer to use the converter utility and generate these wrappers to be
shipped with the underlying IVI-C driver. A few important obstacles make that far from
an ideal strategy for the test and measurement community at large.

First, the burden of creating unique icons for a realistic driver with many methods and
properties is almost always underestimated. This is particularly true of modern instruments
where method and property counts easily reach into the hundreds. IVI drivers cover a
broad spectrum of instruments, not just a few simple devices for which IVI may have
created a class definition. The trend in instrument complexity is up, not down, so this
burden will grow, not diminish.

Secondly, the converter utility is not even part of LabVIEW. At one time it was part of
LabVIEW, but has been removed and is now a separate download that you must retrieve
from the National Instruments’ web site. Once there, you must answer a number of
questions such as who developed the IVI-C driver, if you plan on sharing the driver, and
what specific instrument models you intend to support. This means that instrument
manufacturers who choose IVI-C as their base driver for supporting LabVIEW will be
complicit in driving end-user traffic to their competitor’s web site. To avoid aiding the
competition, manufacturers would need to download and run the converter themselves
revealing information about products they may have not announced yet. Neither of
these consequences offers much confidence in an IVI-C driver strategy for LabVIEW
leading to concerns over whether the underlying rationale for IVI-C is technically or
commercially motivated.

3 While it is possible to display the VI names above each of the VIs, this adds a surprising amount of clutter to the
diagram. This mainly is due to the long names of IVI-C driver functions, which must be globally unique across
the entire driver.

Page 15 of 57

IVI-COM DRIVERS IN LABVIEW

IVI-COM driver access in LabVIEW works in exactly the same fashion as any other COM
components. Since COM components are widely available, it is likely that a LabVIEW
user will have used these features before, thereby reducing the effort required to
integrate an IVI-COM driver. To get started with using an IVI-COM driver in LabVIEW, you
call up the Class Browser from the View menu.

This browser presents a hierarchical view of all methods and properties available in the
driver. This format is clearer than the graphical palette shown earlier and additionally
shows driver properties, something the IVI-C wrapper palette does not. The fact that IVI-
C drivers deal with properties very differently than methods creates confusion in other
ADEs as well (this will be discussed more fully in the Integrated Hierarchy section). The

Page 16 of 57

user can use the Class Browser to view IVI-C properties just as with IVI-COM, but they
cannot see the methods. Here is what the Class Browser displays for the same IVI-C driver
presented earlier in the discussion of IVI-C Drivers in LabVIEW.

None of the methods for this IVI-C driver are displayed. This means that with an IVI-C
driver, the user must toggle between the Class Browser and the menu palette when
building an application. Moreover, in spite of what some IVI-C advocate’s claim, most of
the functionality in IVI drivers (COM or C) is exposed via properties, which means users will
be dealing primarily with the Class Browser. The majority of the LabVIEW user experience
will be identical with IVI-COM or IVI-C. Additionally, the ability to access IVI-COM
methods and properties in once place is unquestionably an advantage IVI-COM drivers
have over IVI-C drivers in LabVIEW.

Page 17 of 57

From a navigation perspective, the IVI-COM driver makes it much easier to navigate to
specific functionality. Compare what a user sees in navigating the TDMA functionality in
the Class Browser with what they see in the IVI-C wrapper menu palette.

A single, clear interface exposes all IVI-COM driver methods and properties, while the IVI-
C wrapper palette is ambiguous and does not provide access to properties. Another
feature of the Class Browser is that when you close it and later recall it from the View
menu, it automatically returns to the same driver at the exact same place in the
hierarchy. With the VI menu palette used by IVI-C drivers, you must navigate from the
top through the hierarchy each time you want to drop a function on the diagram.
Alternatively, you can pin a particular submenu and it will remain visible, but this quickly
results in a screen cluttered with little floating palette windows. Given these facts, claims
that IVI-C drivers are easier to use in LabVIEW simply don’t hold up.

Page 18 of 57

To write LabVIEW applications with an IVI-COM driver, you simply select a method or
property from the Class Browser and drag it on to the diagram, as in the image below:

The Class Browser automatically creates a LabVIEW Invoke Node associated with the
selected IVI-COM driver’s Initialize method. The Invoke Node is well designed, intuitive to
use, and understandable when viewed on a real diagram. The Node clearly indicates
the IVI-COM parent interface name (IIviRFSigGen), the method name (Initialize), and
each of the input parameters. If the method had any output parameters, these also
would be shown. Each parameter is conveniently color-coded to indicate the data
type. For the Initialize node, the ResourceName and OptionString parameters are pink,
indicating they are strings. Boolean parameters are indicated by the color green. The
OptionString parameter has a slight but easily discernable gray background indicating
that this parameter is optional. At a glance, a LabVIEW user easily can see everything
there is to know about this method without clicking on a VI to bring up a front panel or
without hovering over the node with the mouse. The user can even bring up the driver
help page for the method by simply hitting the F1 key with the node selected. This
feature is not available for IVI-C drivers in LabVIEW.

Page 19 of 57

IVI-COM driver properties are accessed in exactly the same fashion as methods. Simply
select a property from the Class Browser and drag it onto diagram.

You also can expand the Property Node to access multiple properties at once. In
addition, you can specify that some properties should be written and others read back
all with a single Property Node. Such a node would look like this:

Page 20 of 57

This node sets an IVI-COM DMM driver’s Function property and then reads back the
Range and Resolution properties. The coloring indicates the data types – blue is an
integer type while orange is a floating-point date type. The input control and output
indicators also have small annotations (“I32” for 32-bit integer and “DBL” for double-
precision floating point) that provide a convenient visual cue.

LabVIEW code for accessing an IVI-C driver’s attributes is identical to that shown above
for IVI-COM. Property nodes are used in precisely the same fashion for both flavors of IVI
drivers. Since real-world drivers consist primarily of properties, LabVIEW applications built
on IVI-COM drivers will look very close to their IVI-C counterparts. As an example, the
code below shows the same simple task of configuring an RF signal using an IVI-C driver
and an IVI-COM driver:

Even though this particular example shows three method Invoke Nodes and only two
Property Nodes, the diagram real estate used is almost exactly the same. In a more
realistic example, the properties would likely outnumber methods, so the diagrams would
be even more similar than what is shown. Looking at the IVI-COM code, the LabVIEW
user can easily see at a glance what is happening with each and every node – the
method and property names are readily visible. With IVI-C code, though the properties
are just as clear as with IVI-COM, the methods are more opaque. To know what is going
on, the user has to visually decrypt the method icons or hover over each VI with the

Page 21 of 57

mouse. Realistically, only the original icon developer can be expected to easily
decipher these compact but indistinct visuals.

LABWINDOWS SUPPORT

The one environment where IVI-C drivers have a decided advantage over IVI-COM is
National Instruments LabWindows/CVI, the environment for which IVI-C drivers were
originally designed. LabWindows parses and displays IVI-C function trees and attribute
hierarchies and renders soft front panels with graphical controls for each of the IVI-C
driver methods. Suffice it to say that IVI-C drivers are very much at home in LabWindows.

IVI-COM drivers, however, fare poorly when used in LabWindows. End users must
manually #include header files (.h) and interface definition files (_i.c) emitted by the
Microsoft IDL compiler (MIDL). These MIDL-generated files are not really intended for end-
user consumption. In fact, in these files, the MIDL compiler does not generate the proper
data structures required if a C client needs to access the IVI-COM driver. The driver
developer must manually “massage” these files to provide a working interface for C
users. Not only is it likely a client might be provided with a driver that did not properly do
this customization, there is no IVI-defined standard that guides driver providers in creating
these files. Moreover, IVI does not require these files to be provided at all, meaning an
end user could very easily end up completely on their own in integrating their IVI-COM
driver with C.

LabWindows programmers using IVI-COM drivers also must contend directly with COM
data types, such as VARIANTs, SAFEARRAYs, and BSTRs. The convenient C++ wrappers
available to Visual C++ users are not available in LabWindows. As an example, consider
the code required to create a COM SAFEARRAY and populate it with a few data values.

/* Create an array of 3 double elements */

SAFEARRAY* psa = NULL;

double *pData = NULL;

psa = ::SafeArrayCreateVector(VT_R8, 0, 3);

if (psa == NULL)

return E_OUTOFMEMORY;

/* Populate the array with data */

::SafeArrayAccessData(psa, (void HUGEP **)&pData);

pData[0] = 3.14;

pData[1] = 1.00;

pData[2] = 2.79;

Page 22 of 57

// Pass pData to IVI-COM driver

IAgilent34401* pDriver = // ...

IAgilent34401_Configure(pDriver, pData);

In any other environment, the code to perform this very basic IVI-COM driver task would
be much simpler. In C#, the code would be trivial:

double[] data = { 3.14, 1.00, 2.79 };

// Pass data to IVI-COM driver

IAgilent34401 driver = // ...

driver.Configure(data);

IVI-COM drivers are too unwieldy to be useful in LabWindows CVI. If you need to provide
a reasonable experience for LabWindows users, then you must supply an IVI-C driver in
addition to your IVI-COM driver.

CLASS DRIVERS

Interchangeability with IVI-C relies upon a special kind of driver known as a class driver.
These class drivers expose generic function entry points that delegate to a specific driver
written for a particular instrument. Users that want to write an interchangeable
application use only functions exposed by the class driver. The following code
demonstrates how to use an IviDmm class driver to write interchangeable code.

ViSession session;

IviDmm_InitWithOptions("MyDmm", VI_FALSE, VI_FALSE, VI_NULL,

&session);

IviDmm_ConfigureTrigger(session, IVIDMM_VAL_EXTERNAL, 0.1);

IviDmm_SetAttributeViReal64(session, VI_NULL,

 IVIDMM_ATTR_APERTURE_TIME, 0.35);

Page 23 of 57

The “MyDmm” parameter passed to the InitWithOptions function is mapped to a specific
driver in the IVI Configuration Store.4 The call to ConfigureTrigger will call the class driver
DLL ConfigureTrigger function, which looks up “MyDmm,” locates the associated specific
driver and subsequently invokes the ConfigureTrigger function implemented in the
specific driver. All of the function names, attribute names, and attribute value names
used in the application start with the generic IviDmm prefix, so the code has no
dependencies on a specific driver. To use this code with a different instrument, only the
IVI Configuration Store entry for “MyDmm” needs to be updated to point to the new
instrument. The code itself does not need to be recompiled or re-linked.

Though the IVI-C code above works just fine, the trouble is that class drivers are
proprietary products as opposed to shared components distributed and maintained by
the IVI Foundation. In addition, a different class driver must be provided for each
instrument class. National Instruments is the only company that provides IVI class drivers,
so companies implicitly rely on a single supplier. For other instrument manufacturers,
relying on a competitor to deliver the required components for IVI interchangeability is
not an optimal strategy. Yet, with IVI-C, there are no other practical options.

If an end user or instrument manufacturer wants to achieve interchangeability for an
instrument not defined by IVI, they can author what IVI terms a custom instrument class.
For instance, a company such as Nokia may wish to define a generic cell phone
instrument class to standardize functionality common to all of its mobile devices. For this
to work with IVI-C, Nokia would have to author an IVI-C class driver. This involves
implementing all of the delegation logic described above, as well as special error
handling and session management logic prescribed by the IVI-C specifications.

By contrast, IVI-COM drivers require no special proprietary components to build
interchangeable applications. The code for implementing IVI-defined functions is
housed in the same DLL as the code for implementing instrument-specific functions. The
following code shows how to write interchangeable code with an IVI-COM driver.

IviSessionFactory fac = new IviSessionFactoryClass();

IIviDmm dmm = (IIviDmm)fac.CreateDriver("MyDmm");

dmm.Initialize("MyDmm", true, true, "");

dmm.Trigger.Configure(

IviDmmTriggerSourceEnum.IviDmmTriggerSourceExternal, 0.1);

4 The IVI Configuration Store is an XML file and an accessor component known as the IVI Configuration Server.
Both are freely distributed by the IVI Foundation (www.ivifoundation.org) as part of the IVI Shared Components,
which must be installed in order to build applications that use an IVI-COM or IVI-C driver.

http://www.ivifoundation.org/

Page 24 of 57

dmm.Advanced.ApertureTime = 0.35;

The IviSessionFactory component is provided by the IVI Foundation and automatically
installed as part of the IVI Shared Components. Similar to the IVI-C class drivers, the
IviSessionFactory locates a specific driver by looking up “MyDmm” in the IVI
Configuration Store. A reference to the IVI-COM driver is returned in the “dmm” variable.
The difference here is that the IviSessionFactory works with any instrument class – IVI-
defined or user-defined. New instrument classes can be developed without authoring
anything akin to the custom class driver that would be required for IVI-C. Moreover, the
IviSessionFactory is not involved at all after the call to CreateDriver. From that point on,
the user is accessing the IVI-COM driver directly.

SELF DESCRIBING COMPONENTS

The principal reason COM components, such as IVI-COM drivers, offer benefits over
conventional Win32 DLLs, such as IVI-C drivers, is that the COM binary itself is fully self-
describing. During compilation, the compiler preserves much of the detailed data it
processes from source files and bakes a standard format type library directly into the DLL.
As a result, you can open a COM DLL in any number of readily available object browsers
and discover a great deal of important information, such as:

• Available interfaces.
• Names and full signatures of methods and properties.
• Directional information for parameters (input, output, input/output).
• Definitions and allowed values for enumerated types.
• Component version information.
• Help content for methods, properties, enums, and interfaces.

The presence of this rich library of information, generically referred to as metadata, forms
the foundation for virtually every important feature that COM provides – from IntelliSense,
to versioning, to remote access. The Microsoft .NET framework can accurately be
thought of as an evolution of metadata. The impressive features available in .NET – from
garbage collection to just-in-time compilation, can all be traced back to the richer
metadata available in .NET DLLs.

Conversely, conventional Win32 DLLs have very little metadata. If you run the
dumpbin.exe command line utility on an IVI-C driver, you will only see a list of function
names. There is no information about such things as the type or number of method
parameters or which attributes are supported. This is not because of a defect or missing

Page 25 of 57

feature in the dumpbin utility, it is simply because the metadata is not in the DLL at all. At
compilation time, the compiler discards the details in the header files and source files it
processes. This is why end users need header files, which are not required in COM. It also
is why users can easily import COM components into .NET environments, whereas a great
deal of tedious coding is required for IVI-C. All of the metadata for IVI-C must be supplied
manually as was demonstrated in the section on .NET Support.

To compensate for the lack of intrinsic metadata, IVI-C relies on additional external files
to describe a driver – all of which are required by the IVI-C specifications. Function
layout is described in the function panel (.fp) file, while attributes are described in the
attribute information file (.sub). Linking information for driver functions is supplied in the
import library (.lib) while the header file (.h) defines method signatures and data types.
IVI-COM drivers describe with a single DLL what IVI-C drivers require five separate files to
describe. Moreover, the five IVI-C files are dispersed, as per the IVI-C specifications, in
four different directories.

To use an IVI-C driver in an application, you must make your development environment
aware of all of these files and where they reside on disk. For instance, in Visual Studio you
have to specify where the header file and import library live in order to compile an
application, and then you have to make sure the environment can locate the driver DLL
at runtime. Different ADEs have different mechanisms for doing this, so users must
contend with these often unfamiliar and inconsistent features. With IVI-COM, not even
the location of the single COM DLL need be specified. The entire contents of the driver
can be imported with a single #import directive:

#define AGILENT34401_LIBID /

"libid: 74ed456f-1249-4a47-9108-811916aed143"

#import AGILENT34401_LIBID

The #import directive above makes no references to any directory. This is because IVI-
COM drivers are not located based on a path; rather they are identified by a globally
unique identifier (GUID). This makes it easy to write applications that will compile and run
without modification even if the driver install directory changes or is not known by the
developer.

Because of the self-describing and self-contained nature of COM, tooling and ADE
support will continue to grow and evolve over time – as we’ve already seen in the
excellent support .NET provides for COM and even in the purportedly “IVI-C friendly”
LabVIEW environment. The prevalence of COM in the Windows Vista operating system
gives testimony to its staying power. Most core operating system features in Windows
Vista continue to be implemented using COM, not .NET, as many would be led to

Page 26 of 57

believe. Suffice it to say, COM will remain an important component technology on
Windows for the foreseeable future.

Page 27 of 57

INTEGRATED HIERARCHY

Modern instruments increasingly have large functional surface areas. Providing a driver
that is both easy-to-use and functionally complete requires careful attention to the
layout of the driver hierarchy. Both IVI-COM and IVI-C drivers allow users to define
hierarchies of methods and properties, but IVI-C hierarchies suffer from a few noteworthy
flaws.

One of the first things users confront when dealing with IVI-C driver hierarchies is the fact
that functions and attributes are stored as two separate hierarchies. The function
hierarchy is stored in the function panel (.fp) file, while the attribute hierarchy is stored in
the attribute information (.sub) file. The .fp file uses a somewhat antiquated binary file
format, while the .sub file uses simple ASCII data. LabWindows/CVI displays these two
hierarchies separately, making it difficult to view related bits of driver functionality in one
place.

The following image shows how LabWindows displays the function hierarchy.

Page 28 of 57

In order to view the attribute hierarchy, the user must navigate to one of the attribute
accessor functions (such as SetAttributeViReal64), open the associated panel, click the
”Operate Function Panel Window” button, and finally click on the Attribute ID control.

This brings up the following attribute hierarchy:

While this navigation is certainly inconvenient, it is a feature of LabWindows and not
fundamentally a limitation of IVI-C drivers. Considering that LabWindows is the principal
environment where IVI-C drivers are used, it is important to consider these behaviors.
However, even if an ADE managed to merge the function and attribute hierarchies of an
IVI-C driver and display those together, more fundamental problems would immediately
become apparent.

Pacific MindWork’s Nimbus Driver Studio software renders IVI-C attributes and functions in
a single hierarchy. The image below presents the IVI-C function tree layout in a Nimbus-
generated help file for an IVI-C DMM driver. The hierarchy shown presents only the items
defined by the IVI-C portion of the IviDmm specification.

Page 29 of 57

The trouble with this hierarchy is that the IVI specifications have actually defined IVI-C
functions in different locations than their associated attributes. Notice that the Configure
Thermocouple function is located in a completely different portion of the hierarchy than
the Thermocouple Type attributes it controls.

The “path” to the Configure Thermocouple function is:

\Configuration\Specific Measurements\Temperature\Configure Thermocouple

And the path to the Thermocouple Type attribute is:

\Temperature Measurements\Thermocouple\Thermocouple Type

Page 30 of 57

This is far from an exceptional case in the IVI-C specifications; rather, it is the norm. The
bi-furcated IVI-C hierarchy is fundamentally unavoidable and is a source of significant
user confusion and inconvenience. Contrast that with the hierarchy for an IVI-COM
DMM driver:

The IVI-COM hierarchy is noticeably simpler than the corresponding IVI-C hierarchy, even
though they both represent the exact same functionality. For example, the Configure
Thermocouple function is located in the exact same place as its associated attributes,
including the Thermocouple Type attribute.

NAME COLLISIONS

All function and attribute names in IVI-COM are scoped by the interface in which they
are defined. You can have a method called “Configure” in the IviDmmMultiPoint
interface along with a completely different method called “Configure” in the

Page 31 of 57

IviDmmThermocouple interface. Users distinguish between the two quite easily in their
application code:

IIviDmm dmm = // ...

dmm.Trigger.MultiPoint.Configure(...);

dmm.Temperature.Thermocouple.Configure(...);

With IVI-C drivers, all functions and attributes are globally scoped, so they must have
globally unique names, such as “ConfigureMultiPoint” and “ConfigureThermocouple”.5
The IVI-C application code also easily discriminates between the two:

ag34401_ConfigureMultiPoint(...);

ag34401_ConfigureThermocouple(...);

The problem that occurs with IVI-C is when a driver defines a method that logically does
the same thing as an IVI-defined method, but does not match the exact signature of its
IVI-defined equivalent. For example, consider the IVI-C definition of the
ConfigureThermocouple function:

IviDmm_ConfigureThermocouple(ViSession vi,

ViInt32 thermocoupleType, ViInt32 refJunctionType);

Even though the IVI-C driver might support this class-compliant function, it is more likely
that the instrument-specific portion of the driver design will call for a
ConfigureThermocouple function that has a different signature. The Agilent 34980A
driver, for example, supports the IviDmm interfaces, but defines its thermocouple
configuration function such that, in IVI-C, it would have the following signature:

ag34980_ConfigureThermocouple(ViSession vi,

ViConstString channelList, ViInt32 Resolution,

ViInt32 thermocoupleType);

Since IVI requires the IVI-defined version to be named “ConfigureThermocouple,” and
since both versions cannot have this same name, the driver developer is left with a
difficult choice. The developer must expose only the IVI-defined function and leave the
instrument-specific one out completely, or they must give the instrument-specific version
a slightly different name. Since both functions do the same thing, any different name will

5 As per the IVI specifications, the IVI-defined functions and the instrument-specific functions in an IVI-C driver all
start with the same specific driver prefix, such as “ag34401_”. You cannot differentiate between IVI-C functions
based on the instrument prefix at all.

Page 32 of 57

inevitably lead to user confusion. Should the instrument-specific function add a suffix,
such as “2”, “Ex”, “New” or simply “Specific”? The user would be confronted with
something like the following in the driver header file:

ag34980_ConfigureThermocouple(ViSession vi,

ViInt32 thermocoupleType, ViInt32 refJunctionType);

ag34980_ConfigureThermocoupleSpecific(ViSession vi,

ViConstString channelList, ViInt32 Resolution,

ViInt32 thermocoupleType);

Which should the test programmer use in their application? Even after a unique name
has been chosen, the driver developer must decide where in the IVI-C hierarchy to put
the instrument-specific version. If they put it in the hierarchy next to the class-compliant
version, then test programmer sees two confusingly similar names in the function tree
right next to one another. If the driver developer attempts to avoid this problem by
burying the instrument-specific version in a different portion of the function tree, then
how would a test programmer who comes across the class-compliant version first even
know they might need to look elsewhere in the tree for the more fully functional
instrument-specific version?

The bottom line is that there are no good options. Furthermore, there are no IVI
requirements or guidelines for implementing any of the bad options. This leads to obscure
and distressing inconsistencies between instrument manufacturers and is an intrinsic
weakness in the IVI-C driver architecture. Instruments are becoming more complex, not
simpler, which means the mismatch between IVI-defined functions and instrument-
specific functions will grow. This problem will only get worse over time.

USING PROPERTIES

IVI drivers consist of methods and properties. Independent of the instrument’s
complexity, there typically is a greater number of properties than methods. The more
complex the instrument, the more properties tend to outnumber methods. Users
demand fine-grained control over the instrument – often for flexibility and performance
reasons. Thus, the ease with which driver properties are accessed is an important
consideration when comparing IVI-COM and IVI-C. For a variety of reasons that will be
detailed in this section, accessing driver properties is much simpler with IVI-COM drivers
than with IVI-C. Consider the following simple C# code fragment that initializes an IVI-
COM driver and sets the Resolution property:

Page 33 of 57

IIviDmm dmm = new Agilent34401();

dmm.Initialize(“GPIB::6”, true, true, “”);

dmm.Resolution = 0.35;

The same operation with an IVI-C driver requires using an attribute accessor function, as
in the following example:

ViSession session;

ViStatus status;

status = ag34401_InitWithOptions(“GPIB::6”, VI_TRUE, VI_TRUE,

 &session);

status = ag34401_SetAttributeViReal64(session, VI_NULL,

AG34401_ATTR_RESOLUTION, 0.35);

The IVI-COM driver code is certainly much more concise than the IVI-C driver code,
especially considering the fact that the IVI-C example is not even checking the return
status for errors. The IVI-COM code implicitly does this without the need to explicitly test
function return values. This important advantage will be discussed further in the Error
Handling section.

THE INTELLISENSE EXPERIENCE

Developers need to consider the test programmer’s IntelliSense experience when setting
properties on IVI drivers. IntelliSense makes it much easier to reference methods or
properties on an object by displaying a list of members after you type an object name
followed by a period. Developers now rely very heavily upon IntelliSense, so optimizing its
behavior is an important consideration for IVI drivers. With the IVI-COM DMM code
above, after the developer types “dmm” and then a period, they are immediately
presented with a short list of methods and properties available in that context, as in the
figure below.

Page 34 of 57

With very little typing or a priori knowledge of the driver, users can quickly use IntelliSense
to explore the entire set of methods and properties available. Note that even the help
information for the selected method is displayed and tracks the user’s selection. Many
programmers claim that IntelliSense often is more useful and convenient than help files
for initially understanding what functionality an IVI-COM driver offers.

When typing the equivalent code for the IVI-C driver, IntelliSense is far less effective.
After the programmer types “ag34401” (the first characters of the attribute accessor),
IntelliSense is not automatically activated. Even if the user knows how to activate
IntelliSense by typing Ctrl-spacebar, the list presented will include everything in the global
namespace – which is an enormous number of data types and functions. All of the IVI-C
functions appear together in a flat list – alongside the IVI-C attributes. Modern IVI drivers
might have hundreds of functions, so scrolling through the list to select the desired
function becomes tedious. If the developer doesn’t already know the exact name of
the function they want to use, they will quickly become frustrated scrolling through this
global flat list. Even if the developer does know the exact name of the function, they will
have to type a significant portion of the name before IntelliSense navigates close
enough to the desired function for them to select it. For example, many IVI-C functions
start with “Configure”, such as “ConfigureRange”. For the programmer to call this
function, they will likely need to type “ag34401_Conf”, followed by Ctrl-spacebar, and
then scroll to the “ag34401_ConfigureRange” function. By the time they have performed
all of the required keystrokes, they have lost most of the value of IntelliSense.

This IntelliSense impediment is actually encountered twice for each call to an attribute
setter or an attribute getter. Consider again the SetAttributeViReal64 function:

Page 35 of 57

ag34401_SetAttributeViReal64(session, VI_NULL,

AG34401_ATTR_RESOLUTION, 0.35);

The third parameter to this function is the attribute ID. It specifies which attribute should
be set. Even after the user has typed the SetAttributeViReal64 function name, they will
have to locate the AG34401_ATTR_RESOLUTION constant for the attribute ID parameter.
At a minimum, they will have to manually type “AG34401_ATTR” before they can easily
locate the desired attribute ID, because all IVI-C attributes share this prefix.

Properties that use enumerated types show perhaps the biggest difference in the
IntelliSense experience with IVI-COM and IVI-C drivers. For example, consider the
TriggerSource property for a DMM. With IVI-COM, the proper enumeration for
TriggerSource automatically will be presented to the user as they type, as in the figure
below:

Typing a period (or pressing the tab key) displays the allowed values for the
TriggerSource enumeration:

Page 36 of 57

In the end, the property assignment above requires 72 characters, only about eight of
which the user had to type after the initial “dmm” (this includes punctuation and
whitespace).

IVI-C drivers use #define’d constants to represent enumerated values, as in the following:

ag34401_SetAttributeViInt32(session, VI_NULL,

AG34401_ATTR_TRIGGER_SOURCE, AG34401_VAL_EXTERNAL);

As with the attribute ID parameter, IntelliSense can offer little support in locating valid
constants for the attribute value. All of the associated constants start
with”AG34401_VAL_”, so the user must at least type that much of the name manually
before IntelliSense can help at all. Worse still, allowed values for a specific property will
be listed alphabetically in IntelliSense – not grouped according to the attribute to which
they apply. This makes it difficult to determine which values go with which attribute and
requires the user to scroll through the entire list of constants defined for the entire driver.
In the current example, consider the number of items that would occur between the
trigger source value AG34401_VAL_EXTERNAL and AG34401_VAL_TTL7. Since “E” and “T”
are on opposite ends of the alphabet, these values will be separated by almost all of the
defined attribute values for the entire driver.

Though seemingly minor annoyances, when multiplied across dozens of attribute
operations in a typical application these syntactic battles compromise the end-user
experience.

TYPE-SAFE PROPERTIES

The IVI-C attribute mechanism is susceptible to specific kinds of errors that cannot occur
with IVI-COM drivers. Consider the following erroneous IVI-COM code which attempts to
assign a floating-point value to a property that accepts an integer data type:

dmm.Scan.Count = 15.5; // ERROR: Compiler reports problem

This error will be caught at compile time because the property is type safe – the compiler
inherently knows that Count is an integer. It isn’t possible for the programmer to ship a
driver with such a flaw.

With IVI-C drivers, all of the attributes are represented by #define’d integer constants,
such as AG34401_ATTR_SCAN_COUNT. The compiler has no information as to the proper
data type for the IVI-C Count property and there is no way to detect the following
commonly encountered error:

Page 37 of 57

// ERROR: Undetected until runtime

ag34401_SetAttributeViReal64(session, VI_NULL,

AG34401_ATTR_SCAN_COUNT, 15);

The above code is mistakenly using the attribute accessor for floating-point data types to
set an integer attribute. Even though the value 15 appears to be compatible, this code
will return an error at runtime.

REPEATED CAPABILITIES

Instruments often contain multiple instances of the same type of functionality. An
oscilloscope, for instance, might have several channels with the same measurement
capabilities, or a spectrum analyzer might support multiple traces from a series of
acquisitions. IVI refers to these as repeated capabilities, and both IVI-COM and IVI-C
drivers provide standard mechanisms for accessing functionality on a repeated
capability.

Recall the definition of the SetAttributeViReal64 function:

ViStatus IviDCPwr_SetAttributeViReal64(ViSession vi,

 ViConstString repCapName, ViAttr attributeId,

ViIntReal64 value);

The repcapName parameter specifies the repeated capability instance to which the
attribute operation should be applied. For instance, to enable output channel 1 on a
DC power supply driver, the user code would look similar to the following:

IviDCPwr_SetAttributeViBoolean(session, “Channel1”,

 IVIDCPWR_ATTR_OUTPUT_ENABLED, VI_TRUE);

In practice, several operations on the same repeated capability often are performed
together, requiring code such as the following:

IviDCPwr_SetAttributeViReal64(session, “Channel1”,

 IVIDCPWR_ATTR_CURRENT_LIMIT, 12.5);

IviDCPwr_SetAttributeViReal64(session, “Channel1”,

 IVIDCPWR_ATTR_VOLTAGE_LEVEL, 3.0);

IviDCPwr_SetAttributeViBoolean(session, “Channel1”,

 IVIDCPWR_ATTR_OUTPUT_ENABLED, VI_TRUE);

Page 38 of 57

With IVI-C repeated capabilities, the user must take care to pass in a valid repeated
capability name to each of the attribute setters AND ensure that the same string is
passed to the function. As with many other aspects of the IVI-C attribute model, the
compiler cannot help at all in flagging these errors at compile time.

IVI-COM repeated capabilities primarily use collections to access per-instance
functionality. The following example shows how to set properties on the same instance
of the DC power supply output channel:

IIviDCPwrOutput output = dc.Outputs.get_Item(“Channel1”);

output.CurrentLimit = 12.5;

output.VoltageLevel = 3.0;

output.Enabled = true;

With IVI-COM, a single call to the Item method retrieves the correct output channel. All
subsequent operations will inherently be performed on the same, correct output
channel. This advantage becomes even more compelling when considering repeated
capabilities nested within other repeated capabilities. IVI terms these nested repeated
capabilities. For example, a device might have multiple triggers for each output.
Accessing nested capabilities is arguably clearer with IVI-COM drivers, as the syntax is a
natural extension of the non-nested case. For example, consider the following code:

IAgilent34401Trigger trig =

driver.Outputs.get_Item(“Out1”).Triggers.get_Item(“Trig1”);

trig.Level = 0.45;

It is clear from the code that the trigger repeated capability is nested within the output
repeated capability. The IVI-C equivalent requires the use of special IVI-defined nested
repeated capability syntax:

ag34401_SetAttributeViReal64(session, “Out1:Trig1”,

 AG34401_ATTR_TRIGGER_LEVEL, 0.45);

The string “Out1:Trig1” denotes a trigger nested within an output. However, users would
likely have to consult the IVI-3.1 Architecture specification to discover this IVI-defined
notation. Other users reading the code also would not necessarily understand the
required colon notation as easily as they would the equivalent IVI-COM syntax.

A more fundamental problem with IVI-C repeated capabilities is that there is no way to
immediately discern whether a particular attribute even applies to a repeated capability
at all. All attributes use the same attribute accessors and all of these functions, as we’ve
seen, require the user to pass in a repCapName parameter. If the attribute does not
apply to a repeated capability, then the user passes in VI_NULL. Since the IVI-C attribute

Page 39 of 57

model is not type safe, there again is no way for the compiler to keep the user from
making the mistake of supplying a repCapName when none applies or from omitting the
repCapName when it is required. The following code demonstrates some of these kinds
of common errors.

// Wrong – must indicate which trigger repeated capability

ag34401_SetAttributeViReal64(session, VI_NULL,

 AG34401_ATTR_TRIGGER_LEVEL, 0.45);

// Wrong – Range applies to the whole driver, not to Channel1

ag34401_SetAttributeViReal64(session, “Channel1”,

 AG34401_ATTR_RANGE, 100);

// Wrong – Enabled is a property of output repeated capability,

// not the trigger repeated capability

ag34401_SetAttributeViBoolean(session, “Out1:Trig1”,

 AG34401_ATTR_OUTPUT_ENABLED, VI_TRUE);

The above errors cannot occur with IVI-COM repeated capabilities because any
property that applies to a repeated capability can be accessed only through a method
that requires a repCapName. This also is evident from the IVI-COM hierarchy, whereas it
is not clear at all from looking at the IVI-C hierarchy. Examine the following IviPwrMeter
hierarchy for an IVI-COM driver. The attributes that apply to the Channel repeated
capability, such as Enabled, are clearly grouped under the Channels->Item method.
Other attributes, such as Trigger Source, apply to the driver as a whole.

Page 40 of 57

Page 41 of 57

The corresponding IVI-C hierarchy looks like the following:

In stark contrast to the IVI-COM hierarchy, the IVI-C hierarchy gives no indication as to
which attributes apply to repeated capabilities and which do not. For instance,
Correction Frequency applies to a specific Channel repeated capability while Units
applies to the driver as a whole. Yet, these attributes both are defined as children of the
patently nondescript Basic Operation group.

MULTIPLE INSTRUMENT CLASS SUPPORT

Some instruments have functionality that spans instrument classes. For instance, a switch-
measure unit, such as the Agilent 34980A, contains both switching capabilities and DMM
capabilities. IVI defines switches and DMMs in separate instrument class specifications –

Page 42 of 57

IviSwtch and IviDmm, respectively. IVI-COM drivers can seamlessly support multiple IVI
instrument classes in a single driver. The Agilent 34980A IVI-COM driver capitalizes on this
by exposing both the IviSwtch and IviDmm interfaces. This allows the driver to be used
interchangeably in a far wider variety of applications.

In contrast, IVI-C drivers only can support a single IVI instrument class. This is a
fundamental limitation of the attribute model that IVI-C drivers employ. For example, the
Bandwidth attribute from the IviSwtch instrument class and the Trigger Delay attribute
from the IviDmm class are assigned the same attribute ID value (1250005) in their
respective IVI-C header files. In other words, they are defined as follows:

// In IviSwtch.h

#define IVISWTCH_ATTR_BANDWIDTH 1250005

// In IviDmm.h

#define IVIDMM_ATTR_TRIGGER_DELAY 1250005

The specific driver must support all attributes, irrespective of where they are defined, with
a single set of attribute accessors such as the SetAttributeViReal64 function defined
below:

ViStatus ag34980a_SetAttributeViReal64(ViSession vi,

 ViConstString repCapName, ViAttr attributeId,

ViIntReal64 value);

It is impossible to implement the above function so that it can distinguish between calls
that want to set the IviSwtch Bandwidth attribute and those that want to set the IviDmm
Trigger Delay attribute. From the perspective of the IVI-C driver, the following two
functions calls look to be setting the exact same attribute:

ag34980a_SetAttributeViReal64(session, VI_NULL,

 IVISWTCH_ATTR_BANDWIDTH, 10000);

ag34980a_SetAttributeViReal64(session, VI_NULL,

 IVIDMM_ATTR_TRIGGER_DELAY, 0.07);

There is no solution to this problem as it is simply a fundamental limitation of the IVI-C
architecture. IVI-COM uses a completely different mechanism for dealing with attributes
so it is not subject to this limitation. IVI-COM attributes are scoped by their parent
interface, so they can implement any number of IVI instrument classes simultaneously.

Page 43 of 57

MIXING CLASS-COMPLIANT AND INSTRUMENT-SPECIFIC CODE

The use of IVI-C drivers becomes noticeably more complex than IVI-COM when one
considers applications that use IVI-defined functionality (also called class-compliant
functionality) together with instrument-specific functionality. The class-compliant
functions often cover only a portion of the functionality that a user might need. IVI
recommends an approach that leverages the class-compliant functions as much as
possible along with instrument-specific functions where required. To achieve this with IVI-
C requires carefully managing separate instrument sessions for calls to the class driver
versus calls to the specific driver. This is considerably less intuitive and more error prone
than the equivalent code in IVI-COM. The example below shows the IVI-C code that is
required to invoke a single class-compliant attribute and a single instrument-specific
attribute. Even though two independent instrument sessions are in use, one for the class-
driver and one for the specific driver, the real work still is still done in the specific driver.

ViSession classSession;

IviDmm_InitWithOptions("MyDmm", VI_FALSE, VI_FALSE, VI_NULL,

&classSession);

ViSession specificSession;

IviDmm_GetSpecificDriverCHandle(classSession, &specificSession);

IviDmm_SetAttributeViReal64(classSession, VI_NULL,

 IVIDMM_ATTR_APERTURE_TIME, 0.35);

ag34401_SetAttributeViReal64(specificSession, VI_NULL,

 AG34401_ATTR_FOO, 1.0E6);

In the example above, IVIDMM_ATTR_APERTURE_TIME is a class-compliant attribute, while
AG34401_ATTR_FOO attribute is an instrument-specific attribute that is not understood by
the class driver. If a user is dealing with a class-compliant attribute or an instrument-
specific attribute, they must do four things: 1) use the appropriate function prefix (IviDmm
versus ag34401); 2) specify the correct session parameter (classSession or specificSession);
3) pass instrument-specific attributes to instrument-specific functions; and 4) pass class-
compliant attributes to class-compliant functions. It’s easy to mismanage these
requirements and produce buggy applications. Unlike with IVI-COM, the compiler has
no ability to detect these errors with IVI-C and they will not be discovered until runtime.

Page 44 of 57

Consider the following four ways to set the AG34401_ATTR_FOO attribute. All of these
examples look very similar and all compile without error, but only one of them will
execute at runtime without generating an error.

// Correct – compiles and runs

ag34401_SetAttributeViReal64(specificSession, VI_NULL,

 AG34401_ATTR_FOO, 1.0E6);

// WRONG – Passing specific driver session to class driver

IviDmm_SetAttributeViReal64(specificSession, VI_NULL,

 AG34401_ATTR_FOO, 1.0E6);

// WRONG – Passing instr-specific attribute to class driver

IviDmm_SetAttributeViReal64(classSession, VI_NULL,

 AG34401_ATTR_FOO, 1.0E6);

// WRONG – Passing class driver session to specific driver

ag34401_SetAttributeViReal64(classSession, VI_NULL,

 AG34401_ATTR_FOO, 1.0E6);

An even more subtle error occurs if a user inadvertently passes an IVI-defined attribute to
an instrument-specific function. In the example below, the user mistakenly passes the
correct IVI-defined attribute (IVIDMM_ATTR_APERTURE_TIME) to the instrument-specific
version of the attribute accessor.

// Wrong – Bypassing class driver, but compiles and runs!

ag34401_SetAttributeViReal64(specificSession, VI_NULL,

 IVIDMM_ATTR_APERTURE_TIME, 1.0E6);

The code above will compile and run without any errors, but the function call completely
bypasses the class driver, which should be used for all IVI-defined attributes and
functions. This can be confusing for the developer. Class drivers might be implementing
important logic for state caching, range checking, coercion, simulation, or a variety of
other features -- and all of that would be silently short-circuited by the benign-looking
error above.

With IVI-COM drivers, the code is much simpler and eliminates the occurrence of the
previously discussed errors. The IVI-COM driver is more type-safe because the compiler
can ensure that instrument-specific attributes are mated with instrument-specific driver
code and class-compliant attributes are mated with class-compliant driver code. The
example below shows how simple it is to access both kinds of functionality with IVI-COM
drivers.

Page 45 of 57

IviSessionFactory fac = new IviSessionFactoryClass();

IIviDmm dmm = (IIviDmm)fac.CreateDriver("MyDmm");

dmm.Initialize("MyDmm", true, true, "");

dmm.Advanced.ApertureTime = 0.15;

IAgilent34401 agDmm = (IAgilent34401)dmm;

agDmm.Foo = 15.1E6;

No instrument-specific properties are accessible from the dmm variable, nor are any
class-compliant properties accessible from the agDmm variable.

ERROR HANDLING

Error handling is an aspect of test application development that is all too often
mismanaged. Both IVI-C drivers and IVI-COM drivers use error codes to indicate a failure
condition. In IVI-C, these error codes are simple integer constants defined as ViStatus
while in IVI-COM they are special HRESULT codes. The advantage of IVI-COM driver error
handling is that users can leverage a standard exception handling mechanism built into
COM and supported by all popular ADEs. When an error occurs in an IVI-COM driver, the
driver returns an error object that contains much more information than does a simple
IVI-C error code return value. The COM error object contains:

• The HRESULT error code.
• A string identifying the original source of the error.
• A GUID identifying the specific interface that caused the error.
• A driver-defined description of the error.
• Links to the page in the driver help file that explains the error.

The last item is particularly useful because it allows users to immediately navigate to the
related help page whenever they encounter an error dialog in their application.

Not only is the IVI-COM error reporting richer, but it also reduces the code that
developers must write. With IVI-C return codes, users must take care to always check the
return value of each function. This adds considerable code to the application and
introduces the opportunity for silent errors if a developer forgets to check a return value
somewhere in the application. In contrast, IVI-COM driver errors are transformed into
exceptions that get thrown on the client. This happens automatically, irrespective of
whether the ADE in use is Visual Basic 6, C#, Visual C+, or any of numerous other
environments. This means that the user need not have explicit error handling checks at

Page 46 of 57

each function call and an error that occurs will be detected immediately at the initial
point of failure.

BETTER DATA TYPES

Both IVI-COM and IVI-C drivers are written using a modest set of fundamental data types.
This helps ensure drivers will be easily accessible in the widest range of ADEs. However,
IVI-COM data types allow for the design of simpler and easier-to-use driver functions.

ARRAYS AND STRINGS

IVI-C drivers rely on traditional C-style arrays and strings. C-style arrays are simply pointers
to a contiguous block of memory as are C-style strings. There is no way to carry array size
or dimensional information in a C-style array or string. This information has to be manually
provided when calling methods on IVI-C drivers. Consider the IVI-C Get Channel Name
function defined in the IviScope instrument class:

IviScope_GetChannelName(ViSession vi,

 ViInt32 index,

 ViInt32 bufferSize,

 ViChar name[]);

The bufferSize parameter specifies how many ViChar characters have been allocated in
the name output string. This is important so that the method implementation knows how
many characters can be written to the name output parameter. Users would invoke this
method using code similar to the following:

ViChar name[50];

IviScope_GetChannelName(session, 2, 50, name);

When dealing with arrays, the situation often is more complex than the simple preceding
example. Arrays often represent some sort of measurement data. With IVI-C drivers, the
client application must specify how many array elements have been pre-allocated. The
method implementation must pass back a different parameter indicating how many
array elements were actually written to the output parameter. The Fetch Waveform
method defined in the IviScope specification provides an excellent example of this
situation:

IviScope_FetchWaveform (ViSession vi,

Page 47 of 57

 ViConstString channel,

 ViInt32 waveformSize,

 ViReal64 waveform[],

 ViInt32 *actualPoints,

 ViReal64 *initialX,

 ViReal64 *xIncrement);

The waveformSize parameter is an input that tells the method implementation how many
elements the user allocated in the waveform array. The actualPoints parameter is an
output that tells the user how many points were actually read from the instrument and
written to the waveform array. It takes three parameters to manage a single array in IVI-
C. If a method needed to deal with more than one array, and there are many real-
world examples where this occurs, then there might need to be even more extraneous
method parameters.

IVI-COM arrays and strings are fully self-describing. The BSTR data type is used for string
parameters and intrinsically carries length information with it. The SAFEARRAY data type
is used universally in IVI-COM drivers for array parameters. A single SAFEARRAY
parameter contains element type information, size information, the number and size of
array dimensions, as well as the array data itself. This allows IVI-COM methods such as
Fetch Waveform to be simpler than their IVI-C counterparts, as can be seen from the IVI-
COM definition for the Fetch Waveform function.

FetchWaveform(SAFEARRAY(double)* WaveformArray,

 double* InitialX,

 double* XIncrement);

A corollary to this discussion is the fact that the memory for all output parameters is
allocated by the caller with IVI-C and allocated by the driver with IVI-COM. Having the
IVI-COM driver function allocate memory makes sense because typically only the driver
knows how much memory is needed to return data retrieved from the instrument. In
contrast, an application using an IVI-C driver must know ahead of time how many
elements will be returned before calling a function such as Fetch Waveform. Often an
application does not know so it must literally “guess,” call the Fetch Waveform function
with the estimated size, and then check the actualPoints parameter to see how many
elements were returned. If the actualPoints is equal to the waveformSize passed to the
function, then the application must assume that there is more data to be retrieved. It
must call the function again, merge the resulting array with the initial array, and start the
sequence all over again. The required code is complex:

Page 48 of 57

ViSession session = // ...;

ViStatus status;

ViInt32 actualPoints;

ViReal64 IntialX;

ViReal64 XIncrement;

ViReal64 waveformChunk[100];

ViReal64* waveform;

ViInt32 waveformPoints = 0;

do

{

 // Retrieve no more than 100 elements

 status = IviScope_FetchWaveform(session, "Channel1", 100,

 waveformChunk, &actualPoints, &IntialX, &XIncrement);

 if (status == VI_SUCCESS)

 {

 ViInt32 chunkSize = actualPoints * sizeof(ViReal64);

 ViInt32 waveformSize =

waveformPoints * sizeof(ViReal64);

 ViInt32 newSize = chunkSize + waveformSize;

 ViReal64* tempWaveform = (ViReal64*)malloc(newSize);

 memcpy(tempWaveform, waveform, waveformSize);

 memcpy(tempWaveform + waveformSize, waveformChunk,

 chunkSize);

 waveform = tempWaveform;

 waveformPoints = waveformPoints + actualPoints;

 }

} while ((actualPoints == 100) && (status == VI_SUCCESS));

The call to FetchWaveform retrieves 100-element chunks of data. Inside the If-statement,
the code allocates a new array large enough to hold the data from previous calls to
FetchWaveform and the data from the current chunk. The previous data and the
current chunk are then copied into the waveform variable. If the actualPoints
parameter returned from the function is 100, then the application must assume more
data is available so FetchWaveform is called repeatedly. This continues until the driver
signals that no more data is available by returning a value less than 100 in the
actualPoints output parameter.

The equivalent code in a C++ IVI-COM client is mercifully simpler:

IIviScopePtr scope = // ...

SAFEARRAY* waveform = NULL;

Page 49 of 57

double initialX;

double xInrement;

scope->FetchWaveform(&waveform, &initialX, xIncrement);

Since the IVI-COM method is responsible for allocating all of the memory for the
waveform data, the user can retrieve everything that is available in a single call to
FetchWaveform.

OBJECT PARAMETERS

Driver functions often return related data as separate output parameters. Consider the
following IVI-C function definition:

IviRFSigGen_QueryWaveformCapabilities(

ViSession vi,

 ViInt32* MaxNumberWaveforms,

 ViInt32* WaveformQuantum,

 ViInt32* MinWaveformSize,

 ViInt32* MaxWaveformSize);

To use this function, the developer must declare four local variables to retrieve each of
the output parameters:

ViSession session = //...

ViInt32 MaxNumberWaveforms;

ViInt32 WaveformQuantum;

ViInt32 MinWaveformSize;

ViInt32 MaxWaveformSize;

IviRFSigGen_QueryWaveformCapabilities(session,

&MaxNumberWaveforms, &WaveformQuantum,

 &MinWaveformSize, &MaxWaveformSize);

if (MaxWaveformSize > 1000)

// ... do something

It would be much more convenient and logical to deal with all of the outputs as a single
unit, such as a C-style struct, particularly if the calling code was only interested in one or
two of the output parameters. Unfortunately, IVI-C drivers cannot use structs in their
public APIs. Structs are not a data type that is allowed by the IVI-C specifications.

Page 50 of 57

On the other hand, IVI-COM drivers naturally group related items together in interfaces.
Navigating between interfaces in an IVI-COM driver involves calling a property that
returns an interface which contains a group of related methods and properties.
Interfaces also are used to access independent instances of repeated capabilities, as
shown earlier in the section on Repeated Capabilities. In a similar fashion, IVI-COM driver
methods can return interfaces that bundle output parameters into a single object. Such
a method definition would transform the above into the following:

QueryWaveformCapabilities(IIviRfSigGenWfmCapabilities** caps);

The IVI-COM client code for calling this function would be much simpler than the IVI-C

code shown previously:

IIviRfSigGenWfmCapabilities caps = QueryWaveformCapabilities();

if (caps.MaxWaveformSize > 1000)

// ... do something

REMOTE ACCESS AND LOCATION TRANSPARENCY

One of the more widespread trends in application development today is the use of
distributed systems. Applications might access devices, components, or resources that
reside in a different application or on a different machine on the network. The LXI
Consortium (www.lxistandard.org) is an example of a rapidly moving effort with a goal of
making it easier to create distributed test systems. As the prominence of network-centric
LXI devices grow, so too will the need for remote communication between software
components. In this area, IVI-COM enjoys a compelling advantage over IVI-C.

As with any COM component, IVI-COM drivers can be accessed remotely without
requiring any extra effort on the part of the driver developer and no additional coding
on the part of the application programmer. The COM runtime takes care of all the
details of shuttling method calls and their parameter data payload between
applications running in different processes on the same computer, or between
applications on different computers on the network. In fact, programs working with an
IVI-COM driver can do so without any knowledge of where the driver is physically
running. This feature is known as location transparency. Conventional Win32 DLLs, such
as IVI-C drivers, have no such built-in remote communication mechanism. Consequently,

Page 51 of 57

each IVI-C client program that needs to deal with remote resources must contend with
low-level, inter-process communication facilities, such as sockets, named pipes, or
memory mapped files.

PERFORMANCE MYTHS

One common misconception about IVI is that IVI-C drivers are intrinsically faster than IVI-
COM drivers. In reality, this is not the case. A wide variety of factors influence the
performance of an application that uses IVI drivers – far too many factors to
categorically rate one type of driver more efficient than the other. The only fundamental
difference between calling an IVI-COM driver method and an IVI-C driver method is that
IVI-COM method calls are virtual. This simply means that the microprocessor must jump
through one extra hardware address register. The added overhead is a handful of clock
cycles which, on a modern processor, might add up to a nanosecond. If the application
is interchangeable, then the IVI-C application needs to use a class driver. This involves
two driver function calls per application function call. This overhead is actually larger
than the single virtual method call that IVI-COM drivers require. In either case, such a
miniscule amount of time is insignificant in an environment where I/O operations
consuming tens or hundreds of milliseconds swamp out almost any other performance
factor. Other factors such as the internal structure of the driver, the amount and type of
data being passed, and the severity of virtual memory paging, all influence driver
performance dramatically. Neither driver technology enjoys a decided advantage over
the other in any of these areas.

CONCLUSION

This paper has attempted to present a comprehensive, detailed and objective
explanation of the benefits IVI-COM drivers enjoy over IVI-C. Misinformation and
confusion about IVI is widespread and, in the perpetual jockeying between proponents
of one technology over the other, the details of the real issues often get lost. When you
put both technologies under the microscope and examine the actual code end users
must deal with, IVI-C begins to show its warts. There is no single fatal flaw in IVI-C drivers
that render them decidedly inferior to IVI-COM – which is why all the small blemishes and
annoyances rarely get the attention they should. But it is the collection of these IVI-C

Page 52 of 57

limitations and irritations that, when viewed in the aggregate or when magnified by
repeated exposure, culminate in a greatly diminished end-user experience.

Pacific MindWorks actively supports both IVI-COM and IVI-C in our services and with our
Nimbus Driver Studio product, so we have no inherent interest in advocating one type of
driver over the other. The goal here is simply to promote IVI as a driver standard by
ensuring it always has its best foot forward. That best foot, in almost all circumstances, is
unquestionably IVI-COM.

Page 53 of 57

APPENDIX A – IVI-COM/IVI-C COMPARISON CHART

 IVI-COM IVI-C

.NET Support
• No manual coding is required

to support .NET applications.

• Interchangeable .NET
applications can easily be
developed.

• Special .NET attributes and
method declarations are
required in client applications.

• Interchangeable .NET
applications are not possible.

LabVIEW Support
• Readability of code using

Invoke Nodes and Property
Nodes is superior to that of
wrapped driver VIs.

• All driver functionality,
methods and properties, is
accessible from the Class
Browser.

• Navigation of driver
functionality is clearer and
more convenient in the Class
Browser than in the Function
palette.

• Property access is identical to
IVI-C.

• Palette icons for accessing
driver functions are often
ambiguous.

• Development of unique icons
is burdensome. Without
unique icons, application
code is difficult to understand
at a glance.

• Users must toggle between
the Class Browser for
accessing attributes and the
Functions palette for
accessing functions.

• Users must download and run
a separate tool to generate
wrapper VIs.

• Application code contains a
mixture of wrapper VIs and
Property Nodes.

LabWindows Support
• Too difficult to be practical for

most users.
• Simple and natively

supported.

Page 54 of 57

 IVI-COM IVI-C

.NET Support
• No manual coding is required

to support .NET applications.

• Interchangeable .NET
applications can easily be
developed.

• Special .NET attributes and
method declarations are
required in client applications.

• Interchangeable .NET
applications are not possible.

Interchangeability
• Interchangeable applications

require no 3rd party
components.

• A single driver can easily
support more than one IVI
instrument class.

• Applications can easily
access different IVI-defined
class interfaces.

• Applications can mix calls to
IVI-defined functions and
instrument-specific functions
easily and clearly. Errors are
reported at compile time.

• Interchangeability requires
proprietary class drivers,
currently only available from
a single supplier.

• A single driver can only
support a single IVI instrument
class.

• Mixing calls to IVI-defined
functions and instrument-
specific functions is error
prone, and many common
errors cannot be detected
until runtime.

Deployment
• Drivers are fully self-describing

– only a single file needs to be
imported by client
applications.

• Client applications do not
require knowledge of where
the driver is installed.

• Drivers require a header file, a
driver DLL, a library file, an .fp
file, and a .sub file.

• Application code must
explicitly specify the location
of DLL, header, and library
files.

Page 55 of 57

 IVI-COM IVI-C

.NET Support
• No manual coding is required

to support .NET applications.

• Interchangeable .NET
applications can easily be
developed.

• Special .NET attributes and
method declarations are
required in client applications.

• Interchangeable .NET
applications are not possible.

Function Hierarchy
• Functions are located next to

their associated attributes.

• Function and attribute names
are inherently scoped by their
parent interface, allowing
designers complete freedom
in choosing meaningful
names.

• Functions and attributes are
located in two completely
different hierarchies.

• All function and attribute
names must be globally
unique, often leading to
confusing name collisions
between instrument-specific
and class-compliant names.

Attribute Access
• Drivers provide simple and

familiar “dot” syntax for
accessing attributes.

• The compiler reports many
types of common
programming errors.

• Users enjoy a rich IntelliSense
experience.

• Very little typing is required for
clients to access an attribute.

• Attribute access rely upon
special attribute accessor
functions.

• Many common errors cannot
be detected until runtime.

• IntelliSense is only marginally
useful.

• Even simple attribute access
operations require a
significant amount of typing.

Page 56 of 57

 IVI-COM IVI-C

.NET Support
• No manual coding is required

to support .NET applications.

• Interchangeable .NET
applications can easily be
developed.

• Special .NET attributes and
method declarations are
required in client applications.

• Interchangeable .NET
applications are not possible.

Repeated Capabilities
• Familiar collection interfaces

clearly indicate what
functionality applies to
repeated capabilities.

• Nested repeated capability
access is intuitive.

• Users have no indication as to
which attributes apply to a
repeated capability and
which apply to the driver as a
whole.

• Accessing nested repeated
capabilities require a special
IVI-defined string-based
syntax.

• User must take care to pass
the same repeated capability
name to each function and
attribute call.

Error Handling
• Driver error objects contain

rich error information that is
automatically reported in
almost all popular ADEs.

• Errors in the driver
automatically generate
exceptions which cannot be
ignored by the client.

• Errors are reported as function
return codes, which can
easily be ignored by the
application.

• Application code must make
explicit error checks after
each driver call and then
make a separate call into the
driver to retrieve the error
string.

Page 57 of 57

 IVI-COM IVI-C

.NET Support
• No manual coding is required

to support .NET applications.

• Interchangeable .NET
applications can easily be
developed.

• Special .NET attributes and
method declarations are
required in client applications.

• Interchangeable .NET
applications are not possible.

Data Types
• Arrays and strings are fully self-

describing and require no
additional parameters to
carry size information.

• Memory is always allocated
by the driver, so the client
need not know ahead of time
how much data will be
returned.

• Related items can be
returned as a single object.

• Input arrays require an extra
size parameter to be passed
to the driver.

• Output arrays require an extra
buffer size parameter to be
passed to the driver and an
actual size parameter to be
returned from the driver.

• Output strings require an extra
string length parameter to be
returned from the driver.

• Memory is always allocated
by the client, so the
application must know ahead
of time how much data might
be returned from the driver.

• Struct parameters are not
allowed or supported, so
related items must always
appear as separate
parameters.

Remote Access
• Accessing a driver across a

process or network requires
no additional development
work for the driver developer
or the application
programmer.

• No standard mechanism for
cross-process or cross-
machine access exists. Driver
writers and application
developers must resort to
direct use of low-level
Windows APIs.

	TABLE OF CONTENTS
	INTRODUCTION
	BROADEST ADE SUPPORT
	.NET SUPPORT
	LABVIEW SUPPORT
	IVI-C DRIVERS IN LABVIEW
	IVI-COM DRIVERS IN LABVIEW

	LABWINDOWS SUPPORT

	CLASS DRIVERS
	SELF DESCRIBING COMPONENTS
	INTEGRATED HIERARCHY
	NAME COLLISIONS
	USING PROPERTIES
	THE INTELLISENSE EXPERIENCE
	TYPE-SAFE PROPERTIES
	REPEATED CAPABILITIES

	MULTIPLE INSTRUMENT CLASS SUPPORT
	MIXING CLASS-COMPLIANT AND INSTRUMENT-SPECIFIC CODE
	ERROR HANDLING
	BETTER DATA TYPES
	ARRAYS AND STRINGS
	OBJECT PARAMETERS

	REMOTE ACCESS AND LOCATION TRANSPARENCY
	PERFORMANCE MYTHS

	CONCLUSION
	APPENDIX A – IVI-COM/IVI-C COMPARISON CHART

